Заметим, что при соприкосновении с электролитами большинство металлов заряжается отрицательно. В элементе Вольты, например, и медь и цинк переходят в раствор в виде положительных ионов и оба электрода заряжаются отрицательно. Но избыток отрицательного заряда и соответственно разность потенциалов между кислотой и медью меньше, чем между кислотой и цинком. Поэтому для того чтобы использовать образовавшуюся разность потенциалов между металлом и растворителем, мы должны погрузить в растворитель еще один электрод из другого материала. Действительно, если в серную кислоту погрузить два цинковых электрода, то потенциал каждого из них будет
166
на одну и ту же величину ниже потенциала раствора, а следовательно, между обоими цинковыми электродами разность потенциалов окажется равной нулю и прибор не будет действовать в качестве гальванического элемента. Но если второй электрод сделан из другого материала, то разность потенциалов между ним и раствором будет иной, чем для первого из электродов. Следовательно, между двумя различными электродами обнаруживается разность потенциалов, зависящая как от природы растворителя, так и от природы обоих электродов.
Например, в случае элемента Вольты (цинк — серная кислота — медь) разность потенциалов между кислотой и цинком, так же как и между кислотой и медью, отрицательна. Иными словами, если мы будем отсчитывать все разности потенциалов от уровня кислоты, потенциал которой мы примем за нуль, то потенциал меди будет равен —U1, а потенциал цинка —U2, причем по модулю —U2 больше —U1 на 1,1 В. Таким образом, между медью и цинком окажется разность потенциалов (—U1)—(—U2)=U2—U1=1,1 В. Под действием этой разности потенциалов электроны будут переходить по проволоке с цинковой пластины, где их избыток больше, на медную, где их избыток меньше. (Условное направление тока, конечно, обратное: от Cu(+) к Zn(—).) Мы видим теперь, почему э. д. с. элемента не зависит от площади электродов: она представляет собой разность напряжений, возникающих на границах между электролитом и электродами, а каждое из этих напряжений зависит только от природы электродов и от характера взаимодействия между ними и электролитом.
Рассмотрим теперь на примере элемента Даниеля, как происходит движение зарядов в цепи замкнутого гальванического элемента и каким образом поддерживается это движение зарядов, т. е. электрический ток. Для ясности элемент Даниеля изображен на рис. 119 в схематическом виде (два сосуда, изображенные на рис. 117, заменены двумя камерами, левой и правой, разделенными пористой перегородкой). В правой камере находится цинковый электрод в
Рис. 119. Схематическое изображение движения зарядов в замкнутом гальваническом элементе Даниеля
167
растворе цинковой соли (ZnSO4), а в левой — медный электрод в растворе медной соли (CuSO4). Когда элемент разомкнут, между каждым электродом и окружающим его электролитом устанавливается такая разность потенциалов, при которой имеет место равновесие, т. е. одно и то же число ионов переходит за единицу времени из электролита на электрод и обратно. Металлы не растворяются и не оседают; концентрация растворов не меняется. далее 


Используются технологии uCoz